Natural Language Processing (NLP) for Sentiment Analysis of Seblak Bandung Pedas Kudus Reviews
Abstract
This study aims to apply Natural Language Processing (NLP) for sentiment analysis of customer reviews for Seblak Bandung Pedas Hot Gang 2, obtained from Google Maps View. In the digital era, customer reviews play a crucial role in determining the reputation of a business, especially in the culinary industry. Sentiment analysis using NLP enables business owners to automatically identify customer opinions without reading each review individually. The methods used in this study include web scraping to collect customer review data, followed by data preprocessing, text feature extraction using TF-IDF and Word Embedding, and sentiment classification using Machine Learning models (Naïve Bayes, SVM, Random Forest). The results show that the sentiment classification model successfully categorizes customer reviews into positive, negative, or neutral. A total of 63 reviews (57.8%) were classified as positive, 34 reviews (31.2%) as negative, and 12 reviews (11.0%) as neutral. The Naïve Bayes model achieved the highest accuracy at 77.27%, followed by SVM (72.73%) and Random Forest (59.09%). From the sentiment analysis results, it is evident that most customers are satisfied with the product and service quality, though there are still criticisms regarding the level of spiciness and the price, which is considered high. By applying NLP, business owners can gain deeper insights into customer sentiments and make more informed decisions to improve service quality.
Keywords
Full Text:
8i1.8035References
Agung, A., Ditia Andriyani, A., Ngurah, G., & Wismantara, N. (2023). PENGARUH PENGGUNAAN GOOGLE REVIEW TERHADAP PENILAIAN KEPUASAN PELANGGAN BALISTUNG. Jurnal Pengabdian Masyarakat Ilmu Keguruan Dan Pendidikan (JPM-IKP), 6(2), 64–70. https://doi.org/10.31326/JMP-IKP.V6I2.1736
Amelia, E. E., & Yustiana, I. (2024). Analisis Sentimen Pada Ulasan Produk UNIQLO dengan Algoritma Naive Bayes. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 8(1), 141–148. https://doi.org/10.30645/J-SAKTI.V8I1.773
Arrasyid, R. M., Putera, D. E., & Yusuf, A. Y. P. (2024). Analisis Sentimen Review Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Tekno Kompak, 18(2), 319–330. https://doi.org/10.33365/JTK.V18I2.3813
Atika, D., Styawati, S., & Aldino, A. A. (2022). TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN OPINI MASYARAKAT TERHADAP TEKANAN MENTAL PADA MEDIA SOSIAL TWITTER. Jurnal Teknologi Dan Sistem Informasi, 3(4), 86–97. https://doi.org/10.33365/JTSI.V3I4.2054
Hidayat, R., Peminatan, B., Organisasi, M., Daya, S., & Ekonomi, I. (2017). Faktor-Faktor yang Mempengaruhi Consumer Decision Making Process (Studi Kasus Rumah Makan Bebek Sinjai Madura). JIEMS (Journal of Industrial Engineering and Management Systems), 9(2). https://doi.org/10.30813/JIEMS.V9I2.40
Lecun, Y., Bengio, Y., & Hinton, G. (2024). Kecerdasan Buatan Dalam Pengembangan Sistem Komputer Yang Biasanya Memerlukan Kecerdasan Manusia. Jurnal Informatika Multi, 2(4), 144–151. https://doi.org/10.1038/NATURE14539
Muktafin, E. H., Kusrini, K., & Luthfi, E. T. (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1), 32–42. https://doi.org/10.30864/EKSPLORA.V10I1.390
Prof, O. :, & Tarumingkeng, R. C. (2024). Natural Language Processing (NLP).
Rahman, M. A., Budianto, H., & Setiawan, E. I. (2019). Aspect Based Sentimen Analysis Opini Publik Pada Instagram dengan Convolutional Neural Network. INSYST: Journal of Intelligent System and Computation, 1(2), 50–57. https://doi.org/10.52985/INSYST.V1I2.83
RAMADHANTY, D. R. (2021). Implementasi Algoritma Support Vector Machine Pada Analisis Sentimen Data Twitter (Studi Kasus : Ulasan Tentang Indihome Pada Platform Twitter). https://dspace.uii.ac.id/handle/123456789/36015
Septiani, S., musthofa, & Seviawani, P. (2024). Penggunaan Big Data untuk Personalisasi Layanan dalam Bisnis E-Commerce. ADI Bisnis Digital Interdisiplin Jurnal, 5(1), 51–57. https://doi.org/10.34306/ABDI.V5I1.1098
Vaghasiya, K. (2025). 77 Statistik Ulasan Online yang Mengejutkan (Data Baru 2025). https://wisernotify-com.translate.goog/blog/online-review-stats/?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=tc
DOI: http://dx.doi.org/10.30813/jbase.v8i1.8035
Refbacks
- There are currently no refbacks.
ISSN: 2620-7907