Classification of Public Sentiment Related to Stunting in Indonesia Using BERT and SVM
Abstract
Stunting is a serious health issue in Indonesia, including in East Nusa Tenggara Province (NTT), which requires an analysis of public perception to support data-driven policies. This study proposes sentiment analysis using deep learning and machine learning approaches to classify public opinions regarding stunting from social media/online platforms. It aims to evaluate the performance of the BERT (Bidirectional Encoder Representations from Transformers) and SVM (Support Vector Machine) models in identifying sentiment (positive, negative, neutral), compare the advantages of BERT (transformer-based) and SVM (traditional machine learning) for sentiment classification tasks, and analyze the linguistic and contextual factors influencing sentiment polarity through text feature extraction. The research methods include collecting text data from digital platforms, text preprocessing, and model training with BERT embeddings as input features for SVM. The results are compared with traditional baselines (TF-IDF and word2vec) to measure accuracy improvement. The evaluation results show that for Negative Sentiment (86 tweets) Precision: 58%, Recall: 58%, F1-Score: 58%, Accuracy: 100%. Neutral Sentiment (814 tweets) Precision: 30%, Recall: 20%, F1-Score: 25%, Accuracy: 100%. Positive Sentiment (100 tweets) Precision: 60%, Recall: 75%, F1-Score: 68%, Accuracy: 100%. Meanwhile, SVM with various kernel types showed performance differences in sentiment classification.
Keywords
Full Text:
PDFReferences
Abdullah, M. D. & Abdulazeez, A. M., 2021. Machine Learning Applications based on SVM Classification: A Review. Qubahan Academic Journal, pp. 81- 90.[. Tersedia pada https:// journal.qubahan.com/index.php/qaj/article/view/50
A, D. R. & Riti, Y. F., 2024. Analisis Sentimen Ulasan Aplikasi Genshin Impact di Play Store Menggunakan Random Fores. Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika, pp. 578-586. Tersedia pada https://ejournal.itats.ac. id/snestik/article/view/5883
Alghifari, F. & Juardi, D., 2021. Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes. Jurnal Ilmiah Informatika (JIF), Volume 9, pp. 76-81. Tersedia pada https://forum.upbatam.ac.id/index.php/jif/ article/view/3755
Ananda, D. & Suryono, R. R., 2024. Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes. Jurnal Media Informatika Budidarma, Volume 8, pp. 748-757. Tersedia pada https://ejurnal. stmik-budidarma.ac.id/index.php/mib/article/view/7517
Andriani, R., Suhrawardi & Hapisah, 2022. Hubungan Tingkat Pengetahuan Dan Sikap Remaja Dengan. Jurnal Inovasi Penelitian, Volume Vol.2 No.10 Maret, pp. 3441-3446. Tersedia pada https://ejournal.stpmataram.ac.id/JIP/article/view/1341
Atika, D., Styawati & Aldino, A. A., 2022. Term Frequency-Inverse Document Frequency Support Vector Machine Untuk Analisis Sentimen Opini Masyarakat Terhadap Tekanan Mental Pada Media Sosial Twitter. Jurnal Teknologi dan Sistem Informasi (JTSI), Volume 4, pp. 86-97.]. Tersedia pada https://jim.tekn okrat.ac.id/index.php/sisteminformasi/article/viewFile/2054/719
Aziz, Z. A., Abdulqader, D. N., Sallow, A. B. & Omer, H. K., 2021. Python Parallel Processing and Multiprocessing: A Review. Academic Journal of Nawroz University (AJNU), Volume 10, pp. 345-354. Tersedia Pada https://pdfs.semanticscholar.org/7337/73fdf89 057322ea78489912c6f769bdfbaff.pdf
Darwis, D., Pratiwi, E. S. & Pasaribu, A. F. O., 2020. Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia. Jurnal Ilmiah Edutic, Volume 7, pp. 1-11. Tersedia pada https://journal.trunojoy o.ac.id/edutic/article/view/8779
Darwis, D., Siskawati, N. & Zaenal , A., 2021. Penerapan Algoritma Naive Bayesuntuk Analisis Sentimen ReviewData Twitter BMKG Nasional. Jurnal TEKNO KOMPAK, Volume 15, pp. 131-145.Tersediapada https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/744/0
Devlin , J., Chang, M.-W., Lee, K. & Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Association for Computational Linguistics, pp. 4171-4186. Tersedia pada https://arxiv.org/abs/1810.04805
Farras, M., Mawardi, V. C. & Sutrisno, T., 2023. Aplikasi Analisis Sentimen Komentar Pengguna Genshin Impact Di Play Store. Jurnal Ilmu Komputer dan Sistem Informasi, pp. 1-6. [Tersedia pada https://www.researchgate.net/publication/373373575
_Aplikasi_Analisis_Sentimen_Komentar_Pengguna_Genshin_Impact_Di_ Play_Store
Fikri, M. I., Sabrila, T. S. & Azhar, Y., 2020. Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. SMATIKA Jurnal, Volume 10, pp. 71-76Tersedia pada https://jurnal.stiki.ac.id/SMATIKA/article/view/455
Hartanto, R. & Siahaan, M., 2023. Multı-Method Analysıs On Vıdeo Game Addıctıon And Academıc. Conference on Management, Business, , Volume 3, pp. 279-290. Tersedia pada https://journal.uib.ac.id/index.php/combines/article/view/7697
Hatta, M. S. & Lindawati, Y. I., 2024. Hiperrealitas Pemain Game Online: Studi Pemain Genshin Impact di Kota Serang. INNOVATIVE: Journal Of Social Science Research, Volume 4, pp. 2938-2948. Tersedia pada https://j-innovative.org/index.php/Innovat ive/article/view/12811
Kurniyawan , B., Aldino, A. A. & Isnain, A. R., 2022. Sentimen Analisis Terhadap Kebijakan Penyelenggara Sistem Elektronik (Pse) Menggunakan Algoritma Bidirectional Encoderre Presentations From Transformers (Bert). Jurnal Teknologi dan Sistem Informasi (JTSI), 3(E-ISSN: 2746-369), pp. 98-106. Tersedia pada https://jim.teknokr at.ac.id/index.php/sisteminformasi/article/view/2204
Kusnadi, R. et al., 2021. Analisis Sentimen Terhadap Game Genshin Impact Menggunakan Bert. Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, Volume 6, pp. 122-129 Tersedia pada https://www.researchgate.net/publication/353176928
_ANALISIS_SENTIMEN_TERHADAP_GAME_GENSHIN_IMPACT_ MENGGUNAKAN_BERT
Lenggo, G., Yulianti, E. & Sensuse, D. I., 2023. Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 9(DOI: 10.26555/jiteki.v9i3.26490), pp. 746-757. Tersedia pada https://journal.uad.ac.id/index.php /JITEKI/article/view/26490
Liu, M. & Chung, J., 2022. Research of popular success factors of game content
. International Journal of Advanced Smart Convergence, Volume 11, pp. 83-87. Tersedia pada https://www.earticle.net/Article/A414550
Musfiroh, D., Khaira, U., Utomo, P. E. P. & Suratno, T., 2021. Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science, Volume 1, pp. 24-33. Tersedia pada https://www.journal.irpi.or.id/ index.php/malcom/article/view/20
Normawati, D. & Prayogi, S. A., 2021. Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI), Volume 5, pp. 697-711. Tersedia pada https://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369
Prastyo, P. H., Ardiyanto, I. & Hidayat, R., 2020. Indonesian Sentiment Analysis: An Experimental Study of Four Kernel Functions on SVM Algorithm with TF-IDF. International Conference on Data Analytics for Business and Industry (ICDABI. Tersedia pada https://ieeexplore.ieee.org/abstract/document/9325685
Putra, A. B. et al., 2024. Pengenalan Dasar-Dasar HTML dan CSS Pada Siswa/I Yayasan Al- Qaaf Tangerang Banten Dengan Menggunakan Bahasa Pemprograman Visual Studio Code Serta Mampu Membuat Website Sederhana. APPA : Jurnal Pengabdian kepada Masyarakat, 1(3025-0889), pp. 417-422. Tersedia pada https://jurnalmahasiswa.com/index.php/appa/article/view/915
Putri, D. D., Nama, G. F. & Sulistino, W. E., 2022. Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (Dpr) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan (JITET), Volume 10, pp. 34-40 Tersedia pada https://journal.eng.unila.ac.id/index.php/jitet/article/view/ 2262
Raharjo, S., Wulandari & Dito, H. A., 2024. Pengaruh Promosi Media Sosial Dan Reputasi Perusahaan Terhadap Keputusan Pembelian Produk Virtual Genshin Impact. Jurnal Arimbi (Applied Research In Management And Business), Volume 3, pp. 40-52. Tersedia pada https://unkartur.ac.id/journal/index.php/arimbi/article/view/230
Ridwansyah, T., 2022. Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier. KLIK: Kajian Ilmiah Informatika dan Komputer, Volume 2, pp. 178-185. Tersedia pada https://pdfs.semanticscholar. org/2090/abb19c9620e358e3efe0b86c9b6c974173d7.pdf
Ridwansyah, T., 2022. Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier. KLIK: Kajian Ilmiah Informatika dan Komputer, 2(ISSN 2723-3898 (Media Online)), pp. 178-185. Tersedia pada https://pdfs.semanticscholar.org/2090/abb19c9620e358e3efe0b86c9b6c974173d7.pdf
Rina, Hidayat, T. & Saputri, D. U. E., 2024. Analisis Percepatan Pemulihan Ekonomi Indonesia Pasca Pandemi Dengan Big Data Dan Deep Learning. JATI (Jurnal Mahasiswa Teknik Informatika), Volume 8, pp. 3244-3252. Tersedia pada https://ejournal.itn.ac.id/index.php/jati/article/view/9420
Romadhani, F., Mahbubah, N. A. & Kurniawan, M. D., 2021. Implementasi Metode Lean Six Sigma Guna Mengeliminasi Defect Proses Produksi Purified Gypsum Di PT AAA. Jurnal Peradaban Sains Rekayasan Dan Teknologi, Volume 9, pp. 89-103. Tersedia pada https://www.researchgate.net/profile/Nina-Mahbubah/pu blication/357152383
Safitri, T., Umaidah, Y. & Iqbal , M., 2023. Analisis Sentimen Pengguna Twitter Terhadap BTS Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing (JAIC), Volume 7, pp. 38-41. Tersedia pada https://www.researchgate.net/profile/NinaMahbubah/publication/3571523 83
Sambada, F. P. & Ariatmi, S. Z., 2024. An Analysis Of Impoliteness Strategies Of Genshin Impact Player In 1st Anniversary Posted On Twitter. Jurnal Onoma: Pendidikan, Bahasa dan Sastra, Volume 10, pp. 322-332. Tersedia pada https://e- journal.my.id/onoma/article/view/3220
Supriyanto, J., Alita, D. & Isnain, A., 2023. Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring. JURNAL INFORMATIKA DAN REKAYASA PERANGKAT LUNAK
(JATIKA), Volume 4, pp. 74-80. Tersedia pada https://pdfs.semanticscholar.org/99cb/3a59b d48539d64b38494e03322d0fe9512c7.pdf
Vindua, R. & Zailaini, A. U., 2023. Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python. JURIKOM (Jurnal Riset Komputer), Volume 10, pp. 479-487. Tersedia pada https://pdfs.semanticscholar.org/8d92/ed855 cae3b25d230b67f9dad9ba1a48b6e6c.pdf
Wang, Y., Guo, J., Yuan, C. & Li, B., 2022. Sentiment Analysis of Twitter Data. MDPI, pp. 1-14. Tersedia pada https://d1wqtxts1xzle7.cloudfront.net/36584429/28.
Zahraputri, A. & Lusianus , K., 2021. Analisis Persepsi Pemain Terhadap Game Cross-Platform: Studi Kasus Permainan Genshin Impact. Prosiding The 12th Industrial Research Workshop and National Seminar, pp. 1273-1278. Tersedia pada https://d1wqtxts1xzle7.cloudfront.net/36584429/28.
DOI: http://dx.doi.org/10.30813/jbase.v8i2.8960
Refbacks
- There are currently no refbacks.
ISSN: 2620-7907