Prediction of Export Volume in South Sulawesi Based on Destination Country Using the BPNN Method

Widiyanti Widiyanti, Desi Anggreani, Lukman Lukman, Chyquitha Danuputri

Abstract


This study aims to develop a prediction model for South Sulawesi's export volume based on destination countries using the Backpropagation Neural Network (BPNN) method. South Sulawesi has a significant contribution in the export of agricultural, marine, and mining commodities to various Asian and global countries. Common problems in the export process are unpreparedness of goods, limited commodity stocks, and a mismatch between production capacity and destination market demand. The export data used is from 2018 to 2026 with a total of 1,555 rows of data . The BPNN model with a 6-6-1 architecture is applied to study historical patterns and make accurate predictions. The test results show a Mean Squared Error (MSE) value of 0.0161440, with prediction results close to the actual trend. Exports peaked at almost 40 tons in 2019 and decreased significantly in 2023, then are predicted to recover steadily in 2025–2026. The destination countries with the highest export volumes are China, Japan, and East and Southeast Asian countries. The main commodities contributing significantly are octopus, processed wood, and marine products. These findings demonstrate that the BPNN method is effective in identifying export patterns and can be used as a basis for data-driven trade planning at the regional level. This study also underscores the importance of logistical readiness and market diversification in efforts to maintain export sustainability.

 


Keywords


Backpropagation Neural Network, Export Amount, Commodity, Destination Country, Prediction, South Sulawesi

Full Text:

PDF 799-809

References


Y. Parkissing, M. Nasir, and S. Nujum, “Analisis Pertumbuhan Dan Ketimpangan Ekonomi Kabupaten/Kota Di Provinsi Sulawesi Selatan,” J. Manag. Sci., vol. 1, no. 1, pp. 137–148, 2020, doi: 10.52103/jms.v1i1.208.

A. S. Pasaribu, S. Sedjati, and R. Pramesti, “Analisis Kualitas Alginat Rumput Laut (Padina sp.) Menggunakan Metode Ekstraksi Jalur Kalsium,” J. Mar. Res., vol. 9, no. 1, pp. 75–80, 2020, doi: 10.14710/jmr.v9i1.25502.

Badan Pusat Statistik (BPS) Provinsi Sulawesi Selatan, “Perkembangan Ekspor dan Impor Sulawesi Selatan Desember 2024,” Berita Resmi Statistik. [Online]. Available: https://sulsel.bps.go.id/id/pressrelease/2025/02/03/865/perkembangan-ekspor-dan-impor.html

F. Soewignyo and N. Simatupang, “The Effect of Changes in Agricultural Commodity Price on The Welfare of North Sulawesi Farmers,” Klabat Account. Rev. , vol. 1, no. 1, pp. 14–26, 2020.

D. Mangindaan, “Pemetaan Dan Analisis Bibliometrik Dalam Pengembangan Potensi Perikanan, Pesisir, Dan Pariwisata Di Indonesia,” LOGISTA - J. Ilm. Pengabdi. Kpd. Masy., vol. 5, no. 2, p. 8, 2021, doi: 10.25077/logista.5.2.8-20.2021.

F. M. Satria, A. Nugraha, E. P. Yudha, and E. Ernah, “Faktor-Faktor Yang Mempengaruhi Permintaan Industri Hilir Domestik Terhadap Biji Kakao,” Agricore J. Agribisnis dan Sos. Ekon. Pertan. Unpad, vol. 5, no. 2, pp. 139–150, 2020, doi: 10.24198/agricore.v5i2.30800.

S. S. Adhawati and S. M. Mansyur, “Potensi dan Proyeksi Nilai PDRB Sektor Perikanan Provinsi Sulawesi Selatan Potential and Projected Value of GRDP in the Fisheries Sector of South Sulawesi Province,” J. Sos. Ekon. Kelaut. dan Perikan., vol. 18, no. 2, pp. 133–140, 2023.

S. M. H. Putri, “Analisis peramalan jumlah produksi dan volume ekspor pala di Indonesia,” Universitas Islam Negeri Syarif Hidayatullah, 2024.

C. Dr. Ir. Agus Purnomo, M.T., Pemetaan Rantai Pasokan di Industri Tekstil dan Produk Tekstil, vol. 11, no. 1. Banyumas, Jawa Tengah: Penerbit Arta Media Nusantara, 2024. [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI

L. Setiawan and Y. Paris, “Kajian Sistem Informasi Manajemen Terhadap Kinerja Pegawai Melalui Efektivitas Kerja Pada Dinas Perumahan, Kawasan Permukiman Dan Pertanahan Provinsi Sulawesi Selatan,” J. Ilm. Ecosyst., vol. 22, no. 2, pp. 286–294, 2022, doi: 10.35965/eco.v22i2.1520.

P. Indrayati Sijabat, Y. Yuhandri, G. Widi Nurcahyo, and A. Sindar, “Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 11, no. 1, pp. 96–107, 2020, doi: 10.31849/digitalzone.v11i1.3880.

D. Anggreani and C. Danuputri, “Classification Of Student Mental Health Based On Academic And Social Variables Using The Decision Tree Method,” J. Algoritm. Log. dan Komputasi, vol. 08, no. 01, pp. 762–771, 2025, doi: http://dx.doi.org/10.30813/j-alu.v8i1.8652.

Rika Setiana, Razalfa Aindi Siregar, Fahry Husaini, and Agus Perdana Windarto, “Analisis Metode Backpropagation Dalam Memprediksi Jumlah Produksi Daging Kambing di Indonesia,” J. Informatics, Electr. Electron. Eng., vol. 2, no. 4, pp. 113–123, 2023, doi: 10.47065/jieee.v2i4.1177.

Y. A. Gita Indah Marthasari 1*), Silcillya Ayu Astiti 2, “Prediksi Data Time-series menggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 187–193, 2021.

A. Hanum, T. Welanda, A. Wanto, and A. P. Windarto, “Model Prediksi Algoritma ANN Pada Jumlah Ekspor Barang Perhiasan Dan Berharga Menurut Negara Tujuan,” TIN Terap. Inform. Nusant., vol. 3, no. 1, pp. 28–34, 2022, doi: 10.47065/tin.v3i1.1773.

R. Utami and A. Hidayatullah, “Prediksi Curah Hujan Pada Stasiun BMKG ( CITEKO ) Menggunakan Metode Backpropogation Neural Network,” J. Ilm. Elektron. DAN Komput., vol. 17, no. 1, pp. 251–255, 2024.

H. Jayadianti, T. A. Cahyadi, N. A. Amri, and M. F. Pitayandanu, “Metode Komparasi Artificial Neural Network Pada Prediksi Curah Hujan - Literature Review,” J. Tekno Insentif, vol. 14, no. 2, pp. 48–53, 2020, doi: 10.36787/jti.v14i2.150.

A. R. M. D. Anggreani, I. A. E. Zaeni, A. N. Handayani, H. Azis, “Multivariate Data Model Prediction Analysis Using Backpropagation Neural Network Method,” in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Surabaya, Indonesia: IEEE, 2021, pp. 239–243. doi: https://doi.org/10.1109/EIConCIT50028.2021.9431879.

M. Li, “Comprehensive Review of Backpropagation Neural Networks,” Acad. J. Sci. Technol., vol. 9, no. 1, pp. 150–154, 2024, doi: 10.54097/51y16r47.

C. K. Arthur, V. A. Temeng, and Y. Y. Ziggah, “Performance Evaluation of Training Algorithms in Backpropagation Neural Network Approach to Blast-Induced Ground Vibration Prediction,” Ghana Min. J., vol. 20, no. 1, pp. 20–33, 2020, doi: 10.4314/gm.v20i1.3.




DOI: http://dx.doi.org/10.30813/j-alu.v8i2.8782

Refbacks

  • There are currently no refbacks.


p-ISSN 2620-620X
e-ISSN 2621-9840

 

Indexed By

  

 


Recommended Tools:


Dimension