CONGESTION-PRONE POINT CLASSIFICATION SYSTEM USING SOM METHOD ANDROID-BASED

Muhyiddin A M Hayat

Abstract


Urban traffic congestion has emerged as a significant challenge, primarily driven by rapid urban expansion and increasing vehicle usage. This study presents the development of a congestion-prone point classification system utilizing the Self-Organizing Maps (SOM) algorithm, integrated into an android-based mobile application. The primary objective is to facilitate the real-time detection and visualization of traffic density hotspots using unsupervised machine learning techniques. Traffic-related data comprising vehicle volume, type distribution, and geospatial coordinates are systematically collected, preprocessed, and transformed into multidimensional feature vectors. These vectors are processed using the SOM algorithm to uncover latent congestion patterns across various road segments. Testing results indicate that the proposed model is capable of accurately identifying congestion-prone areas, which are subsequently visualized within the mobile application using a colour-coded map interface. This integration provides commuters and traffic management authorities with actionable, data-driven insights to support route optimization and congestion alleviation strategies. Overall, the proposed system contributes to the advancement of intelligent transportation infrastructure within the broader framework of smart city development.


Keywords


Traffic Congestion, Self-Organizing Map, Android Application, Smart City, Unsupervised Learning, Geospatial Data

Full Text:

PDF 772-780

References


H. Ding, Z. Zhao, S. Wang, Y. Zhang, X. Zheng, and X. Lu, “Quantifying the impact of built environment on traffic congestion: A nonlinear analysis and optimization strategy for sustainable urban planning,” *Sustain. Cities Soc.*, vol. 122, p. 106249, Mar. 2025, doi: 10.1016/j.scs.2025.106249.

S. Dikshit, A. Atiq, M. Shahid, V. Dwivedi, and A. Thusu, “The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas,” *EAI Endorsed Trans. Energy Web*, vol. 10, pp. 1–13, 2023, doi: 10.4108/EW.4613.

A. I. Koukounaris and Y. J. Stephanedes, “Connected Intelligent Transportation System Model to Minimize Societal Cost of Travel in Urban Networks,” *Sustain.*, vol. 15, no. 21, p. 15383, 2023, doi: 10.3390/su152115383.

T. Blinova, R. Kumar, L. Kansal, P. Bhandari, U. Guven, and Y. L. Prasanna, “Data-Intensive Traffic Management: Real-Time Insights from the Traffic Management Simulation Test,” *BIO Web Conf.*, vol. 86, p. 1089, 2024, doi: 10.1051/bioconf/20248601089.

S. Vilke and F. Tadić, “Review of Good Practices in the Introduction of Traffic Management Systems and Urban Mobility,” *J. Marit. Transp. Sci.*, vol. 59, no. 1, pp. 95–113, 2020, doi: 10.18048/2020.59.06.

L. Tišljarić, T. Carić, B. Abramović, and T. Fratrović, “Traffic state estimation and classification on citywide scale using speed transition matrices,” *Sustain.*, vol. 12, no. 18, p. 7278, 2020, doi: 10.3390/SU12187278.

M. Faisal and T. K. A. Rahman, “Optimally Enhancement Rural Development Support Using Hybrid Multy Object Optimization (MOO) and Clustering Methodologies: A Case South Sulawesi - Indonesia,” *Int. J. Sustain. Dev. Plan.*, vol. 18, no. 6, pp. 1659–1669, Jun. 2023, doi: 10.18280/ijsdp.180602.

Y. Xu, Y. Wang, and S. Peeta, “Leveraging Transformer Model to Predict Vehicle Trajectories in Congested Urban Traffic,” *Transp. Res. Rec.*, vol. 2677, no. 2, pp. 898–909, 2023, doi: 10.1177/03611981221109594.

B. Mohor, C. A. Somasundaram, P. Ronak, S. Bhargavi, and Z. Yuhao, “Enhancing Urban Mobility through Adaptive Traffic Analysis: A Case Study in Singapore,” 2024, doi: 10.21203/rs.3.rs-4591616/v1.

Z. Mahrez, E. Sabir, E. Badidi, W. Saad, and M. Sadik, “Smart Urban Mobility: When Mobility Systems Meet Smart Data,” *IEEE Trans. Intell. Transp. Syst.*, vol. 23, no. 7, pp. 6222–6239, 2022, doi: 10.1109/TITS.2021.3084907.

C. H. Weng and Y. Tang, “The relationship between technology leadership strategies and effectiveness of school administration: An empirical study,” *Comput. Educ.*, vol. 76, pp. 91–107, Jul. 2014, doi: 10.1016/j.compedu.2014.03.010.

J. Garau Guzman and V. M. Baeza, “Enhancing Urban Mobility through Traffic Management with UAVs and VLC Technologies,” *Drones*, vol. 8, no. 1, p. 7, 2024, doi: 10.3390/drones8010007.

M. Faisal, Rahman, F. Shabir, and Ida, “Design and Implementation of Plantation Commodities Price Information Broadcaster via Autoreply Short Message Service on Smartphone,” in *Proceedings - 2nd East Indonesia Conference on Computer and Information Technology: Internet of Things for Industry, EIConCIT 2018*, Nov. 2018, pp. 212–217, doi: 10.1109/EIConCIT.2018.8878575.

İ. Atacak, K. Kılıç, and İ. A. Doğru, “Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers,” *PeerJ Comput. Sci.*, vol. 8, p. e1092, Sep. 2022, doi: 10.7717/peerj-cs.1092.

Veny Cahya Hardita, Pebriyana, and Catharina Elmayantie, “Application of Mental Health Android-based using Forward Chaining Method,” *IIAI Lett. Informatics Interdiscip. Res.*, vol. 5, p. 1, 2024, doi: 10.52731/liir.v005.196.

C. Negi, P. Mishra, P. Chaudhary, and H. Vardhan, “A Review and Case Study on Android Malware: Threat Model, Attacks, Techniques and Tools,” *J. Cyber Secur. Mobil.*, vol. 10, no. 1, pp. 231–260, Mar. 2021, doi: 10.13052/jcsm2245-1439.1018.

A. Taha, O. Barukab, and S. Malebary, “Fuzzy integral‐based multi‐classifiers ensemble for android malware classification,” *Mathematics*, vol. 9, no. 22, p. 2880, Nov. 2021, doi: 10.3390/math9222880.

R. Chopra, S. Acharya, U. Rawat, and R. Bhatnagar, “An Energy Efficient, Robust, Sustainable, and Low Computational Cost Method for Mobile Malware Detection,” *Appl. Comput. Intell. Soft Comput.*, vol. 2023, pp. 1–12, Feb. 2023, doi: 10.1155/2023/2029064.

R. P. N. Budiarti and F. I. R. Kamila, “Transformative Implementation of Android-Based Point of Sale System at Shafira’s Buffet Stall,” *E3S Web Conf.*, vol. 482, p. 02002, Jan. 2024, doi: 10.1051/e3sconf/202448202002.

S. J. Hamdi *et al.*, “A Comprehensive Study of Malware Detection in Android Operating Systems,” *Asian J. Res. Comput. Sci.*, pp. 30–46, Jul. 2021, doi: 10.9734/ajrcos/2021/v10i430248.

M. A. Omer *et al.*, “Efficiency of Malware Detection in Android System: A Survey,” *Asian J. Res. Comput. Sci.*, pp. 59–69, Apr. 2021, doi: 10.9734/ajrcos/2021/v7i430189.

L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,” *Journal of Physics A: Mathematical and Theoretical*, vol. 44, no. 8. pp. 1–14, Sep. 13, 2011, doi: 10.1088/1751-8113/44/8/085201.

M. Faisal and T. K. A. Rahman, “Determining rural development priorities using a hybrid clustering approach: a case study of South Sulawesi, Indonesia,” *Int. J. Adv. Technol. Eng. Explor.*, vol. 10, no. 103, pp. 696–719, Jun. 2023, doi: 10.19101/IJATEE.2023.10101215.

Q. Van Doan, H. Kusaka, T. Sato, and F. Chen, “S-SOM v1.0: A structural self-organizing map algorithm for weather typing,” *Geosci. Model Dev.*, vol. 14, no. 4, pp. 2097–2111, 2021, doi: 10.5194/gmd-14-2097-2021.

L. R. Iyohu, Ismail Djakaria, and La Ode Nashar, “Perbandingan Metode K-Means Clustering dengan Self-Organizing Maps (SOM) untuk Pengelompokan Provinsi di Indonesia Berdasarkan Data Potensi Desa,” *J. Stat. dan Apl.*, vol. 7, no. 2, pp. 195–206, 2023, doi: 10.21009/jsa.07208.

L. Mason, B. Hicks, and J. S. Almeida, “EpiVECS: exploring spatiotemporal epidemiological data using cluster embedding and interactive visualization,” *Sci. Rep.*, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-48484-9.

S. H. R. Abidi *et al.*, “Characterizing Cluster-Based Frailty Phenotypes in a Multicenter Prospective Cohort of Kidney Transplant Candidates,” *Stud. Health Technol. Inform.*, vol. 310, pp. 896–900, 2024, doi: 10.3233/SHTI231094.

M. Faisal, T. K. A. Rahman, I. Mulyadi, K. Aryasa, Irmawati, and M. Thamrin, “A Novelty Decision-Making Based on Hybrid Indexing, Clustering, and Classification Methodologies: An Application to Map the Relevant Experts Against the Rural Problem,” *Decis. Mak. Appl. Manag. Eng.*, vol. 7, no. 2, pp. 132–171, Feb. 2024, doi: 10.31181/dmame7220241023.

S. Wang *et al.*, “Groundwater recharge sources and hydrochemical evolution based on self-organizing maps (SOM) in the southeast of Nansi Lake Basin, North China,” *J. Geochemical Explor.*, vol. 277, p. 107815, Oct. 2025, doi: 10.1016/j.gexplo.2025.107815.

Y. Barlas, “Multiple tests for validation of system dynamics type of simulation models,” *Eur. J. Oper. Res.*, vol. 42, no. 1, pp. 59–87, 1989.




DOI: http://dx.doi.org/10.30813/j-alu.v8i1.8764

Refbacks

  • There are currently no refbacks.


p-ISSN 2620-620X
e-ISSN 2621-9840

 

Indexed By

  

 


Recommended Tools:


Dimension